Как корни находить: § Что такое квадратный корень

Содержание

Как быстро извлекать квадратные корни

Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень. Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

  1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
  2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней.

Итак, алгоритм:

  1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
  2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
  3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

Ограничение корней

В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

102 = 100;
202 = 400;
302 = 900;
402 = 1600;

902 = 8100;
1002 = 10 000.

Получим ряд чисел:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

[Подпись к рисунку]

То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

[Подпись к рисунку]

Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

Отсев заведомо лишних чисел

Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

Последняя цифра квадрата зависит только от последней цифры исходного числа.

Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

22 = 4;
82 = 64 → 4.

Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

[Подпись к рисунку]

Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

[Подпись к рисунку]

Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

Финальные вычисления

Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

522 = (50 +2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;
582 = (60 − 2)2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный 🙂

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Для начала выясним, между какими числами лежит число 576:

400 < 576 < 900
202 < 576 < 302

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

24; 26.

Осталось возвести каждое число в квадрат и сравнить с исходным:

242 = (20 + 4)2 = 576

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Здесь и далее я буду писать только основные шаги. Итак, ограничиваем число:

900 < 1369 < 1600;
302 < 1369 < 402;

Смотрим на последнюю цифру:

1369 → 9;
33; 37.

Возводим в квадрат:

332 = (30 + 3)2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
372 = (40 − 3)2 = 1600 − 2 · 40 · 3 + 9 = 1369.

Вот и ответ: 37.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

2500 < 2704 < 3600;
502 < 2704 < 602;

Смотрим на последнюю цифру:

2704 → 4;
52; 58.

Возводим в квадрат:

522 = (50 + 2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

3600 < 4225 < 4900;
602 < 4225 < 702;

Смотрим на последнюю цифру:

4225 → 5;
65.

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

652 = (60 + 5)2 = 3600 + 2 · 60 · 5 + 25 = 4225;

Все правильно. Записываем ответ.

Заключение

Многие спрашивают: зачем вообще считать такие корни? Не лучше ли взять калькулятор и не парить себе мозг?

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

В общем, учитесь считать. И все будет хорошо. Удачи!

Смотрите также:

  1. Выделение полного квадрата
  2. Преобразование выражений с корнем — часть 1
  3. Тест к уроку «Простые проценты» (легкий)
  4. Задача B1 — время, числа и проценты
  5. Метод коэффициентов, часть 1
  6. Иррациональное уравнение: учимся решать методом уединения корня

Квадратный корень

Предварительные навыки

Основные сведения

Чтобы найти площадь квадрата, нужно длину его стороны возвести во вторую степень.

Найдём площадь квадрата, длина стороны которого 3 см

S = 32 = 9 см2

Теперь решим обратную задачу. А именно, зная площадь квадрата определим длину его стороны. Для этого воспользуемся таким инструментом как кóрень. Корень бывает квадратный, кубический, а также n-й степени.

Сейчас наш интерес вызывает квадратный корень. По другому его называют кóрнем второй степени.

Для нахождения длины стороны нашего квадрата, нужно найти число, вторая степень которого равна 9. Таковым является число 3. Это число и является кóрнем.

Введём для работы с корнями новые обозначения.

Символ кóрня выглядит как . Это по причине того, что слово корень в математике употребляется как радикал. А слово радикал происходит от латинского radix (что в переводе означает корень). Первая буква слова radix это r впоследствии преобразилась в символ корня .

Под корнем располагáют подкореннóе выражение. В нашем случае подкоренным выражением будет число 9 (площадь квадрата)

Нас интересовал квадратный корень (он же корень второй степени), поэтому слева над корнем указываем число 2. Это число называют показателем корня (или степенью корня)

Получили выражение, которое читается так: «квадратный корень из числа 9». С этого момента возникает новая задача по поиску самогó корня.

Если число 3 возвести во вторую степень, то получится число 9. Поэтому число 3 и будет ответом:

Значит квадрат площадью 9 см2 имеет сторону, длина которой 3 см. Приведённое действие называют извлечéнием квадрáтного кóрня.

Нетрудно догадаться, что квадратным корнем из числа 9 также является отрицательное число −3. При его возведении во вторую степень тоже получается число 9

Получается, что выражение  имеет два значения: 3 и −3. Но длина стороны квадрата не может быть отрицательным числом, поэтому для нашей задачи ответ будет только один, а именно 3.

Вообще, квадратный корень имеет два противоположных значения: положительное и отрицательное.

Например, извлечём квадратный корень из числа 4

Это выражение имеет два значения: 2 и −2, поскольку при возведении этих чисел во вторую степень, получится один и тот же результат 4

Поэтому ответ к выражению вида  записывают с плюсом и минусом. Плюс с минусом означает, что квадратный корень имеет два противоположных значения.

Запишем ответ к выражению  с плюсом и минусом:


Определения

Дадим определение квадратному корню.

Квадратным корнем из числа a называют такое число b, вторая степень которого равна a.

То есть число b должно быть таким, чтобы выполнялось равенство ba. Число b (оно же корень) обозначается через радикал  так, что . На практике левая и правая часть поменяны местами и мы видим привычное выражение 

Например, квадратным корнем из числá 16 есть число 4, поскольку число 4 во второй степени равно 16

42 = 16

Корень 4 можно обозначить через радикал  так, что .

Также квадратным корнем из числá 16 есть число −4, поскольку число −4 во второй степени равно 16

(−4)2 = 16

Если при решении задачи интересует только положительное значение, то корень называют не просто квадратным, а арифметическим квадратным.

Арифметический квадратный корень из числá a — это неотрицательное число b (b ≥ 0), при котором выполняется равенство ba.

В нашем примере квадратными корнями из числá 16 являются корни 4 и −4, но арифметическим из них является только корень 4.

В разговорном языке можно использовать сокращение. К примеру, выражение  полностью читается так: «квадратный корень из числá шестнадцать», а в сокращённом варианте можно прочитать так: «корень из шестнадцати».

Не следует путать понятия корень и квадрат. Квадрат это число, которое получилось в результате возведения какого-нибудь числá во вторую степень. Например, числа 25, 36, 49 являются квадратами, потому что они получились в результате возведения во вторую степень чисел 5, 6 и 7 соответственно.

Корнями же являются числа 5, 6 и 7. Они являются теми числами, которые во второй степени равны 25, 36 и 49 соответственно.

Чаще всего в квадратных корнях показатель кóрня вообще не указывается. Так, вместо записи можно использовать запись. Если в учебнике по математике встретится корень без показателя, то нужно понимать, что это квадратный корень.

Квадратный корень из единицы равен единице. То есть справедливо следующее равенство:

Это по причине того, что единица во второй степени равна единице:

12 = 1

и квадрат, состоящий из одной квадратной единицы, имеет сторону, равную единице:

Квадратный корень из нуля равен нулю. То есть справедливо равенство , поскольку 0= 0.

Выражение вида  смысла не имеет. Например, не имеет смысла выражение , поскольку вторая степень любого числа есть число положительное. Невозможно найти число, вторая степень которого будет равна −4.

Если выражение вида  возвести во вторую степень, то есть если записать , то это выражение будет равно подкореннóму выражению a

Например, выражение  равно 4

Это потому что выражение  равно значению 2. Но это значение сразу возвóдится во вторую степень и получается результат 4.

Еще примеры:

Корень из квадрата числá равен модулю этого числá:

Например, корень из числá 5, возведённого во вторую степень, равен модулю числá 5

Если во вторую степень возвóдится отрицательное число, ответ опять же будет положительным. Например, корень из числá −5, возведённого во вторую степень, равен модулю числá −5. А модуль числа −5 равен 5

Действительно, если не пользуясь правилом , вычислять выражение  обычным методом — сначала возвести число −5 во вторую степень, затем извлечь полученный результат, то полýчим ответ 5

Не следует путать правило  с правилом . Правило  верно при любом a, тогда как правило  верно в том случае, если выражение  имеет смысл.

В некоторых учебниках знак корня может выглядеть без верхней линии. Выглядит это так:

Примеры: √4, √9, √16.

Мéньшему числу соответствует мéньший корень, а бóльшему числу соответствует бóльший корень.

Например, рассмотрим числа 49 и 64. Число 49 меньше, чем число 64.

49 < 64

Если извлечь квадратные корни из этих чисел, то числу 49 будет соответствовать меньший корень, а числу 64 — бóльший. Действительно, √49 = 7, а √64 = 8,

√49 < √64

Отсюда:

7 < 8


Примеры извлечения квадратных корней

Рассмотрим несколько простых примеров на извлечение квадратных корней.

Пример 1. Извлечь квадратный корень √36

Данный квадратный корень равен числу, квадрат которого равен 36. Таковым является число 6, поскольку 6= 36

√36 = 6


Пример 2. Извлечь квадратный корень √49

Данный квадратный корень равен числу, квадрат которого равен 49. Таковым является число 7, поскольку 7= 49

√49 = 7

В таких простых примерах достаточно знать таблицу умножения. Так, мы помним, что число 49 входит в таблицу умножения на семь. То есть:

7 × 7 = 49

Но 7 × 7 это 72

7= 49

Отсюда, √49 = 7.


Пример 3. Извлечь квадратный корень √100

Данный квадратный корень равен числу, квадрат которого равен 100. Таковым является число 10, поскольку 102 = 100

√100 = 10

Число 100 это последнее число, корень которого можно извлечь с помощью таблицы умножения. Для чисел, бóльших 100, квадратные корни можно находить с помощью таблицы квадратов.


Пример 3. Извлечь квадратный корень √256

Данный квадратный корень равен числу, квадрат которого равен 256. Чтобы найти это число, воспользуемся таблицей квадратов.

Нахóдим в таблице квадратов число 256 и двигаясь от него влево и вверх определяем цифры, которые образуют число, квадрат которого равен 256.

Видим, что это число 16. Значит √256 = 16.


Пример 4. Найти значение выражения 2√16

В данном примере число 2 умножается на выражение с корнем. Сначала вычислим корень √16, затем перемнóжим его с числом 2


Пример 7. Решить уравнение 

В данном примере нужно найти значение переменной x, при котором левая часть будет равна 4.

Значение переменной x равно 16, поскольку . Значит корень уравнения равен 16.

Примечание. Не следует путать корень уравнения и квадратный корень. Корень уравнения это значение переменной, при котором уравнение обращается в верное числовое равенство. А квадратный корень это число, вторая степень которого равна выражению, находящемуся под радикалом .

Подобные примеры решают, пользуясь определением квадратного корня. Давайте и мы поступим так же.

Из определения мы знаем, что квадратный корень  равен числу b, при котором выполняется равенство ba.

Применим равенство ba к нашему примеру . Роль переменной b у нас играет число 4, а роль переменной a — выражение, находящееся под корнем , а именно переменная x

В выражении 4x вычислим левую часть, полýчим 16 = x. Поменяем левую и правую часть местами, полýчим = 16. В результате приходим к тому, что нашлось значение переменной x.


Пример 8. Решить уравнение 

Перенесем −8 в правую часть, изменив знак:

Возведем правую часть во вторую степень и приравняем её к переменной x

Вычислим правую часть, полýчим 64 = x. Поменяем левую и правую часть местами, полýчим = 64. Значит корень уравнения  равен 64


Пример 9. Решить уравнение 

Воспользуемся определением квадратного корня:

Роль переменной b играет число 7, а роль переменной a — подкореннóе выражение 3 + 5x. Возведем число 7 во вторую степень и приравняем его к 3 + 5x

В выражении 72 = 3 + 5x вычислим левую часть полýчим 49 = 3 + 5x. Получилось обычное линейное уравнение. Решим его:

Корень уравнения  равен . Выполним проверку, подставив его в исходное уравнение:


Пример 10. Найти значение выражения 

В этом выражении число 2 умножается на квадратный корень из числа 49.

Сначала нужно извлечь квадратный корень и перемножить его с числом 2


Приближённое значение квадратного корня

Не каждый квадратный корень можно извлечь. Извлечь квадратный корень можно только в том случае, если удаётся найти число, вторая степень которого равна подкореннóму выражению.

Например, извлечь квадратный корень  можно, потому что удаётся найти число, вторая степень которого равна подкореннóму выражению. Таковым является число 8, поскольку 8= 64. То есть

А извлечь квадратный корень  нельзя, потому что невозможно найти число, вторая степень которого равна 3. В таком случае говорят, что квадратный корень из числа 3 не извлекается.

Зато можно извлечь квадратный корень из числа 3 приближённо. Извлечь квадратный корень приближённо означает найти значение, которое при возведении во вторую степень будет максимально близко к подкореннóму выражению.

Приближённое значение ищут с определенной точностью: с точностью до целых, с точностью до десятых, с точностью до сотых и так далее.

Найдём значение корня  приближённо с точностью до десятых. Словосочетание «с точностью до десятых» говорит о том, что приближённое значение корня  будет представлять собой десятичную дробь, у которой после запятой одна цифра.

Для начала найдём ближайшее меньшее число, корень которого можно извлечь. Таковым является число 1. Корень из этого числа равен самому этому числу:

√1 = 1

Аналогично находим ближайшее бóльшее число, корень которого можно извлечь. Таковым является число 4. Корень из этого числа равен 2

√4 = 2

√1 меньше, чем √4

√1 < √4

А √3 больше, чем √1 но меньше, чем √4. Запишем это в виде двойного неравенства:

√1 < √3 < √4

Точные значения корней √1 и √4 известны. Это числа 1 и 2

1 < √3 < 2

Тогда очевидно, что значение корня √3 будет представлять собой десятичную дробь, потому что между числами 1 и 2 нет целых чисел.

Для нахождения приближённого значения квадратного корня √3 будем проверять десятичные дроби, располагающиеся в интервале от 1 до 2, возводя их в квадрат. Делать это будем до тех пор пока не полýчим значение, максимально близкое к 3. Проверим к примеру дробь 1,1

1,12 = 1,21

Получился результат 1,21, который не очень близок к подкореннóму выражению 3. Значит 1,1 не годится в качестве приближённого значения квадратного корня √3, потому что оно малó.

Проверим тогда дробь 1,8

1,82 = 3,24

Получился результат 3,24, который близок к подкореннóму выражению, но превосходит его на 0,24. Значит 1,8 не годится в качестве приближенного значения корня √3, потому что оно великó.

Проверим тогда дробь 1,7

1,72 = 2,89

Получился результат 2,89, который уже близок к подкореннóму выражению. Значит 1,7 и будет приближённым значением квадратного корня √3. Напомним, что знак приближенного значения выглядит как ≈

√3 ≈ 1,7

Значение 1,6 проверять не нужно, потому что в результате получится число 2,56, которое дальше от трёх, чем значение 2,89. А значение 1,8, как было показано ранее, является уже большим.

В данном случае мы нашли приближенное значение корня √3 с точностью до десятых. Значение можно получить ещё более точно. Для этого его следует находить с точностью до сотых.

Чтобы найти значение с точностью до сотых проверим десятичные дроби в интервале от 1,7 до 1,8

1,7 < √3 < 1,8

Проверим дробь 1,74

1,742 = 3,0276

Получился результат 3,0276, который близок к подкореннóму выражению, но превосходит его на 0,0276. Значит значение 1,74 великó для корня √3.

Проверим тогда дробь 1,73

1,732 = 2,9929

Получился результат 2,9929, который близок к подкореннóму выражению √3. Значит 1,73 будет приближённым значением квадратного корня √3 с точностью до сотых.

Процесс нахождения приближённого значения квадратного корня продолжается бесконечно. Так, корень √3 можно находить с точностью до тысячных, десятитысячных и так далее:

√3 = 1,732 (вычислено с точностью до тысячных)

√3 = 1,7320 (вычислено с точностью до десятитысячных)

√3 = 1,73205 (вычислено с точностью до ста тысячных).

Ещё квадратный корень можно извлечь с точностью до целых. Приближённое значение квадратного корня √3 с точностью до целых равно единице:

√3 ≈ 1

Значение 2 будет слишком большим, поскольку при возведении этого числа во вторую степень получается число 4, которое больше подкоренного выражения. Нас же интересуют значения, которые при возведении во вторую степень равны подкореннóму выражению или максимально близки к нему, но не превосходят его.

В зависимости от решаемой задачи допускается находить значение, вторая степень которого больше подкоренного выражения. Это значение называют приближённым значением квадратного корня с избытком. Поговорим об этом подробнее.


Приближенное значение квадратного корня с недостатком или избытком

Иногда можно встретить задание, в котором требуется найти приближённое значение корня с недостатком или избытком.

В предыдущей теме мы нашли приближённое значение корня √3 с точностью до десятых с недостатком. Недостаток понимается в том смысле, что до значения 3 нам недоставало ещё некоторых частей. Так, найдя приближённое значение √3 с точностью до десятых, мы получили 1,7. Это значение является значением с недостатком, поскольку при возведении этого числа во вторую степень полýчим результат 2,89. Этому результату недостаёт ещё 0,11 чтобы получить число 3. То есть, 2,89 + 0,11 = 3.

С избытком же называют приближённые значения, которые при возведении во вторую степень дают результат, который превосходит подкореннóе выражение. Так, вычисляя корень √3 приближённо, мы проверили значение 1,8. Это значение является приближённым значением корня √3 с точностью до десятых с избытком, поскольку при возведении 1,8 во вторую степень, получаем число 3,24. Этот результат превосходит подкореннóе выражение на 0,24. То есть 3,24 − 3 = 0,24.

Приближённое значение квадратного корня √3 с точностью до целых тоже был найден с недостатком:

√3 ≈ 1

Это потому что при возведении единицы в квадрат получаем единицу. То есть до числа 3 недостаёт ещё 2.

Приближённое значение квадратного корня √3 с точностью до целых можно найти и с избытком. Тогда этот корень приближённо будет равен 2

√3 ≈ 2

Это потому что при возведении числа 2 в квадрат получаем 4. Число 4 превосходит подкореннóе выражение 3 на единицу. Извлекая приближённо квадратный корень с избытком желательно уточнять, что корень извлечен именно с избытком:

√3 ≈ 2 (с избытком)

Потому что приближённое значение чаще всего ищется с недостатком, чем с избытком.

Дополнительно следует упомянуть, что в некоторых учебниках словосочетания «с точностью до целых», «с точностью до десятых», с «точностью до сотых», заменяют на словосочетания «с точностью до 1», «с точностью до 0,1», «с точностью до 0,01» соответственно.

Так, если в задании сказано извлечь квадратный корень из числа 5 с точностью до 0,01, то это значит что корень следует извлекать приближённо с точностью до сотых:

√5 ≈ 2,23


Пример 2. Извлечь квадратный корень из числа 51 с точностью до 1

√51 ≈ 7


Пример 3. Извлечь квадратный корень из числа 51 с точностью до 0,1

√51 ≈ 7,1

Пример 4. Извлечь квадратный корень из числа 51 с точностью до 0,01

√51 ≈ 7,14


Границы, в пределах которых располагаются корни

Если исходное число принадлежит промежутку [1; 100], то квадратный корень из этого исходного числа будет принадлежать промежутку [1; 10].

Например, пусть исходным числом будет 64. Данное число принадлежит промежутку [1; 100]. Сразу делаем вывод, что квадратный корень из числа 64 будет принадлежать промежутку [1; 10]. Теперь вспоминаем таблицу умножения. Какое перемножение двух одинаковых сомножителей даёт в результате 64? Ясно, что перемножение 8 × 8, а это есть 8= 64. Значит квадратный корень из числа 64 есть 8


Пример 2. Извлечь квадратный корень из числа 49

Число 49 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 7, поскольку 7= 49

√49 = 7


Пример 2. Извлечь квадратный корень из числа 1

Число 1 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 1, поскольку 1= 1

√1 = 1


Пример 3. Извлечь квадратный корень из числа 100

Число 100 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 10, поскольку 10= 100

√100 = 10

Понятно, что промежуток [1; 100] содержит ещё и числа, квадратные корни из которых не извлекаются. Для таких чисел корень нужно извлекать приближённо. Тем не менее, приближённый корень тоже будет располагаться в пределах промежутка [1; 10].

Например, извлечём квадратный корень из числа 37. Нет целого числа, вторая степень которого была бы равна 37. Поэтому извлекать квадратный корень следует приближённо. Извлечём его к примеру с точностью до сотых:

√37 ≈ 6,08

Для облегчения можно находить ближайшее меньшее число, корень из которого извлекается. Таковым в данном примере было число 36. Квадратный корень из него равен 6. И далее отталкиваясь от числа 6, можно находить приближённое значение корня √37, проверяя различные десятичные дроби, целая часть которых равна 6.

Квадраты чисел от 1 до 10 обязательно нужно знать наизусть. Ниже представлены эти квадраты:

12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
102 = 100

И обратно, следует знать значения квадратных корней этих квадратов:

Если к любому числу от 1 до 10 в конце дописать ноль (или несколько нулей), и затем возвести это число во вторую степень, то в полученном числе будет в два раза больше нулей.

Например, 6= 36. Допишем к числу 6 один ноль, полýчим 60. Возведём число 60 во вторую степень, полýчим 3600

60= 3600

А если к числу 6 дописать два нуля, и возвести это число во вторую степень, то полýчим число, в котором четыре нуля. То есть в два раза больше нулей:

6002 = 360000

Тогда можно сделать следующий вывод:

Если исходное число содержит знакомый нам квадрат и чётное количество нулей, то можно извлечь квадратный корень из этого числа. Для этого следует извлечь корень из знакомого нам квадрата и затем записать половину количества нулей из исходного числа.

Например, извлечём квадратный корень из числа 900. Видим, что в данном числе есть знакомый нам квадрат 9. Извлекаем из него корень, получаем 3

Теперь из исходного числа записываем половину от количества нулей. В исходном числе 900 содержится два нуля. Половина этого количества нулей есть один ноль. Записываем его в ответе после цифры 3


Пример 2. Извлечём квадратный корень из числа 90000

Здесь опять же имеется знакомый нам квадрат 9 и чётное количество нулей. Извлекаем корень из числа 9 и записываем половину от количества нулей. В исходном числе содержится четыре нуля. Половиной же этого количества нулей будет два нуля:


Пример 3. Извлечем квадратный корень из числа 36000000

Здесь имеется знакомый нам квадрат 36 и чётное количество нулей. Извлекаем корень из числа 36 и записываем половину от количества нулей. В исходном числе шесть нулей. Половиной же будет три нуля:


Пример 4. Извлечем квадратный корень из числа 2500

Здесь имеется знакомый нам квадрат 25 и чётное количество нулей. Извлекаем корень из числа 25 и записываем половину от количества нулей. В исходном числе два нуля. Половиной же будет один ноль:


Если подкореннóе число увеличить (или уменьшить) в 100, 10000 то корень увеличится (или уменьшится) в 10, 100 раз соответственно.

Например, . Если увеличим подкореннóе число в 100 раз, то квадратный корень увеличится в 10 раз:

И наоборот, если в равенстве  уменьшим подкореннóе число в 100 раз, то квадратный корень уменьшится в 10 раз:

Пример 2. Увеличим в равенстве  подкореннóе число в 10000, тогда квадратный корень 70 увеличиться в 100 раз

Пример 3. Уменьшим в равенстве  подкореннóе число в 100 раз, тогда квадратный корень 70 уменьшится в 10 раз

Эта закономерность позволяет извлечь квадратный корень из десятичной дроби, если в данной дроби после запятой содéржатся две цифры, и эти две цифры образуют знакомый нам квадрат. В таких случаях данную десятичную дробь следует умножить на 100. Затем извлечь квадратный корень из получившегося числа и уменьшить подкореннóе число в сто раз.

Например, извлечём квадратный корень из числа 0,25. В данной десятичной дроби после запятой содержатся две цифры и эти две цифры образуют знакомый нам квадрат 25.

Умнóжим десятичную дробь 0,25 на 100, полýчим 25. А из числа 25 квадратный корень извлекается легко:

Но нам изначально нужно было извлечь корень из 0,25, а не из 25. Чтобы исправить ситуацию, вернём нашу десятичную дробь. Если в равенстве  подкореннóе число уменьшить в 100 раз, то полýчим под корнем 0,25 и соответственно ответ уменьшится в 10 раз:

Обычно в таких случаях достаточно уметь передвигáть запятую. Потому что сдвинуть в числе запятую вправо на две цифры это всё равно что умножить это число на 100.

В предыдущем примере в подкоренном числе 0,25 можно было сдвинуть запятую вправо на две цифры, а в полученном ответе сдвинуть её влево на одну цифру.

Например, извлечем корень из числа 0,81. Мысленно передвинем запятую вправо на две цифры, полýчим 81. Теперь извлечём квадратный корень из числа 81, полýчим ответ 9. В ответе 9 передвинем запятую влево на одну цифру, полýчим 0,9. Значит, .

Это правило работает и в ситуации, когда после запятой содержатся четыре цифры и эти цифры образуют знакомый нам квадрат.

Например, десятичная дробь 0,1225 содержит после запятой четыре цифры. Эти четыре цифры образуют число 1225, квадратный корень из которого равен 35.

Тогда можно извлечь квадратный корень и из 0,1225. Умнóжим данную десятичную дробь на 10000, полýчим 1225. Из числа 1225 квадратный корень можно извлечь с помощью таблицы квадратов:

Но нам изначально нужно было извлечь корень из 0,1225, а не из 1225. Чтобы исправить ситуацию, в равенстве  подкореннóе число уменьшим в 10000 раз. В результате под корнем образуется десятичная дробь 0,1225, а правая часть уменьшится в 100 раз

Эта же закономерность будет работать и при извлечении корней из дробей вида 12,25. Если цифры из которых состоит десятичная дробь образуют знакомый нам квадрат, при этом после запятой содержится чётное количество цифр, то можно извлечь корень из этой десятичной дроби.

Умнóжим десятичную дробь 12,25 на 100, полýчим 1225. Извлечём корень из числа 1225

Теперь в равенстве уменьшим подкореннóе число в 100 раз. В результате под корнем образуется число 12,25, и соответственно ответ уменьшится в 10 раз


Если исходное число принадлежит промежутку [100; 10000], то квадратный корень из этого исходного числа будет принадлежать промежутку [10; 100].

В этом случае применяется таблица квадратов:

Например, пусть исходным числом будет 576. Данное число принадлежит промежутку [100; 10000]. Сразу делаем вывод, что квадратный корень из числа 576 будет принадлежать промежутку [10; 100]. Теперь открываем таблицу квадратов и смотрим какое число во второй степени равно 576

Видим, что это число 24. Значит .


Пример 2. Извлечь квадратный корень из числа 432.

Число 432 принадлежит промежутку [100; 10000]. Значит квадратный корень следует искать в промежутке [10; 100]. Открываем таблицу квадратов и смотрим какое число во второй степени равно 432. Обнаруживаем, что число 432 в таблице квадратов отсутствует. В этом случае квадратный корень следует искать приближённо.

Извлечем квадратный корень из числа 432 с точностью до десятых.

В таблице квадратов ближайшее меньшее число к 432 это число 400. Квадратный корень из него равен 20. Отталкиваясь от числа 20, будем проверять различные десятичные дроби, целая часть которых равна 20.

Проверим, например, число 20,8. Для этого возведём его в квадрат:

20,82 = 432,64

Получилось число 432,64 которое превосходит исходное число 432 на 0,64. Видим, что значение 20,8 великó для корня √432. Проверим тогда значение 20,7

20,7= 428,49

Значение 20,7 годится в качестве корня, поскольку в результате возведения этого числа в квадрат получается число 428,49, которое меньше исходного числа 432, но близко к нему. Значит √432 ≈ 20,7.

Необязательно запоминать промежутки чтобы узнать в каких границах располагается корень. Можно воспользоваться методом нахождения ближайших квадратов с чётным количеством нулей на конце.

Например, извлечём корень из числа 4225. Нам известен ближайший меньший квадрат 3600, и ближайший больший квадрат 4900

3600 < 4225 < 4900

Извлечём квадратные корни из чисел 3600 и 4900. Это числа 60 и 70 соответственно:

Тогда можно понять, что квадратный корень из числа 4225 располагается между числами 60 и 70. Можно даже найти его методом подбора. Корни 60 и 70 исключаем сразу, поскольку это корни чисел 3600 и 4900. Затем можно проверить, например, корень 64. Возведём его в квадрат (или умнóжим данное число само на себя)

Корень 64 не годится. Проверим корень 65

Получается 4225. Значит 65 является корнем числа 4225


Тождественные преобразования с квадратными корнями

Над квадратными корнями можно выполнять различные тождественные преобразования, тем самым облегчая их вычисление. Рассмотрим некоторые из этих преобразований.

Квадратный корень из произведения

Квадратный корень из произведения это выражение вида , где a и b некоторые числа.

Например, выражение  является квадратным корнем из произведения чисел 4 и 9.

Чтобы извлечь такой квадратный корень, нужно по отдельности извлечь квадратные корни из множителей 4 и 9, представив выражение  в виде произведения корней . Вычислив по отдельности эти корни полýчим произведение 2 × 3, которое равно 6

Конечно, можно не прибегать к таким манипуляциям, а вычислить сначала подкореннóе выражение 4 × 9, которое равно 36. Затем извлечь квадратный корень из числа 36

Но при извлечении квадратных корней из больших чисел это правило может оказаться весьма полезным.

Допустим, потребовалось извлечь квадратный корень из числа 144. Этот корень легко определяется с помощью таблицы квадратов — он равен 12

Но предстáвим, что таблицы квадратов под рукой не оказалось. В этом случае число 144 можно разложить на простые множители. Затем из этих простых множителей составить числа, квадратные корни из которых извлекаются.

Итак, разлóжим число 144 на простые множители:

Получили следующее разложение:

В разложéнии содержатся четыре двойки и две тройки. При этом все числа, входящие в разложение, перемнóжены. Это позволяет предстáвить произведения одинаковых сомножителей в виде степени с показателем 2.

Тогда четыре двойки можно заменить на запись 2× 22, а две тройки заменить на 32

В результате будем иметь следующее разложение:

Теперь можно извлекáть квадратный корень из разложения числа 144

Применим правило извлечения квадратного корня из произведения:

Ранее было сказано, что если подкореннóе выражение возведенó во вторую степень, то такой квадратный корень равен модулю из подкореннóго выражения.

Тогда получится произведение 2 × 2 × 3, которое равно 12

Простые множители представляют в виде степени для удобства и короткой записи. Допускается также записывать их под кóрнем как есть, чтобы впоследствии перемнóжив их, получить новые сомножители.

Так, разложив число 144 на простые множители, мы получили разложение 2 × 2 × 2 × 2 × 3 × 3. Это разложение можно записать под кóрнем как есть:

затем перемнóжить некоторые сомножители так, чтобы получились числа, квадратные корни из которых извлекаются. В данном случае можно дважды перемнóжить две двойки и один раз перемнóжить две тройки:

Затем применить правило извлечения квадратного корня из произведения и получить окончательный ответ:

С помощью правила извлечения квадратного корня из произведения можно извлекать корень и из других больших чисел. В том числе, из тех чисел, которых нет в таблице квадратов.

Например, извлечём квадратный корень из числа 13456. Этого числа нет в таблице квадратов, поэтому воспользуемся правилом извлечения квадратного корня из произведения, предварительно разложив число 13456 на простые множители.

Итак, разложим число 13456 на простые множители:

В разложении имеются четыре двойки и два числа 29. Двойки дважды предстáвим как 22. А два числа 29 предстáвим как 292. В результате полýчим следующее разложение числа 13456

Теперь будем извлекать квадратный корень из разложения числа 13456

Итак, если ≥ 0 и ≥ 0, то . То есть корень из произведения неотрицательных множителей равен произведению корней из этих множителей.

Докажем равенство . Для этого воспользуемся определением квадратного корня.

Согласно определению, квадратным корня из числа a есть число b, при котором выполняется равенство b= a.

В нашем случае нужно удостовериться, что правая часть равенства  при возведении во вторую степень даст в результате подкореннóе выражение левой части, то есть выражение ab.

Итак, выпишем правую часть равенства  и возведём ее во вторую степень:

Теперь воспользуемся правилом возведения в степень произведения. Согласно этому правилу, каждый множитель данного произведения нужно возвести в указанную степень:

Ранее было сказано, что если выражение вида  возвести во вторую степень, то получится подкореннóе выражение. Применим это правило. Тогда полýчим ab. А это есть подкореннóе выражение квадратного корня

Значит равенство  справедливо, поскольку при возведéнии правой части во вторую степень, получается подкореннóе выражение левой части.

Правило извлечения квадратного корня из произведения работает и в случае, если под кóрнем располагается более двух множителей. То есть справедливым будет следующее равенство:

, при ≥ 0 и ≥ 0, ≥ 0.


Пример 1. Найти значение квадратного корня 

Запишем корень в виде произведения корней, извлечём их, затем найдём значение полученного произведения:


Пример 2. Найти значение квадратного корня 

Предстáвим число 250 в виде произведения чисел 25 и 10. Делать это будем под знáком корня:

Теперь под кóрнем образовалось два одинаковых множителя 10 и 10. Перемнóжим их, полýчим 100

Далее применяем правило извлечения квадратного кóрня из произведения и получáем окончательный ответ:


Пример 3. Найти значение квадратного корня 

Воспользуемся правилом возведения степени в степень. Степень 114 предстáвим как (112)2.

Теперь воспользуемся правилом извлечения квадратного кóрня из квадрата числа:

В нашем случае квадратный корень из числа (112)2 будет равен 112. Говоря простым языком, внешний показатель степени 2 исчезнет, а внутренний останется:

Далее возводим число 11 во вторую степень и получаем окончательный ответ:

Этот пример также можно решить, воспользовавшись правилом извлечения квадратного корня из произведения. Для этого подкореннóе выражение 114 нужно записать в виде произведения 11× 112. Затем извлечь квадратный корень из этого произведения:


Пример 4. Найти значение квадратного корня

Перепишем степень 34 в виде (32)2, а степень 56 в виде (53)2

Далее используем правило извлечения квадратного кóрня из произведения:

Далее используем правило извлечения квадратного кóрня из квадрата числа:

Вычислим произведение получившихся степеней и полýчим окончательный ответ:


Сомножители, находящиеся под корнем, могут быть десятичными дробями. Например, извлечём квадратный корень из произведения

Запишем корень  в виде произведения корней, извлечём их, затем найдём значение полученного произведения:


Пример 6. Найти значение квадратного корня


Пример 7. Найти значение квадратного корня


Если первый сомножитель умножить на число n, а второй сомножитель разделить на это число n, то произведение не изменится.

Например, произведение 8 × 4 равно 32

8 × 4 = 32

Умнóжим сомножитель 8 скажем на число 2, а сомножитель 4 раздéлим на это же число 2. Тогда получится произведение 16 × 2, которое тоже равно 32.

(8 × 2) × (4 : 2) = 32

Это свойство полезно при решении некоторых задач на извлечение квадратных корней. Сомножители подкореннóго выражения можно умнóжить и разделить так, чтобы корни из них извлекались.

Например, извлечём квадратный корень из произведения . Если сразу воспользоваться правилом извлечения квадратного корня из произведения, то не полýчится извлечь корни √1,6 и √90, потому что они не извлекаются.

Проанализировав подкореннóе выражение 1,6 × 90, можно заметить, что если первый сомножитель 1,6 умножить на 10, а второй сомножитель 90 разделить на 10, то полýчится произведение 16 × 9. Из такого произведения квадратный корень можно извлечь, пользуясь правилом извлечения квадратного корня из произведения.

Запишем полное решение данного примера:

Процесс умножения и деления можно выполнять в уме. Также можно пропустить подробную запись извлечения квадратного корня из каждого сомножителя. Тогда решение станóвится короче:


Пример 9. Найти значение квадратного корня

Умнóжим первый сомножитель на 10, а второй раздéлим на 10. Тогда под кóрнем образуется произведение 36 × 0,04, квадратный корень из которого извлекается:


Если в равенстве поменять местами левую и правую часть, то полýчим равенство . Это преобразовáние позволяет упрощáть вычисление некоторых корней.

Например, узнáем чему равно значение выражения .

Квадратные корни из чисел 10 и 40 не извлекаются. Воспользуемся правилом , то есть заменим выражение из двух корней  на выражение с одним корнем, под которым будет произведение из чисел 10 и 40

Теперь найдём значение произведения, находящегося под корнем:

А квадратный корень из числа 400 извлекается. Он равен 20

Сомножители, располагáющиеся под корнем, можно расклáдывать на множители, группировáть, представлять в виде степени, а также перемножáть для получения новых сомножителей, корни из которых извлекаются.

Например, найдём значение выражения .

Воспользуемся правилом

Сомножитель 32 это 25. Предстáвим этот сомножитель как 2 × 24

Перемнóжим сомножители 2 и 2, полýчим 4. А сомножитель 24 предстáвим в виде степени с показателем 2

Теперь воспóльзуемся правилом и вычислим окончательный ответ:


Пример 12. Найти значение выражения

Воспользуемся правилом

Сомножитель 8 это 2 × 2 × 2, а сомножитель 98 это 2 × 7 × 7

Теперь под кóрнем имеются четыре двойки и две семёрки. Четыре двойки можно записать как 2× 22, а две семёрки как 72

Теперь воспользуемся правилом и вычислим окончательный ответ:


Квадратный корень из дроби

Квадратный корень вида равен дроби, в числителе которой квадратный корень из числа a, а в знаменателе — квадратный корень из числа b

Например, квадратный корень из дроби  равен дроби, в числителе которой квадратный корень из числа 4, а в знаменателе — квадратный корень из числа 9

Вычислим квадратные корни в числителе и знаменателе:

Значит, квадратный корень из дроби равен .

Докáжем, что равенство является верным.

Возведём правую часть во вторую степень. Если в результате полýчим дробь , то это будет означать, что равенство верно:


Пример 1. Извлечь квадратный корень 

Воспользуемся правилом извлечения квадратного корня из дроби:


Пример 2. Извлечь квадратный корень 

Переведём подкореннóе выражение в неправильную дробь, затем воспользуемся правилом извлечения квадратного корня из дроби:


Пример 3. Извлечь квадратный корень

Квадратным корнем из числа 0,09 является 0,3. Но можно извлечь этот корень, воспользовавшись правилом извлечения квадратного корня из дроби.

Предстáвим подкоренное выражение в виде обыкновенной дроби. 0,09 это девять сотых:

Теперь можно воспользоваться правилом извлечения квадратного корня из дроби:


Пример 4. Найти значение выражения 

Извлечём корни из 0,09 и 0,25, затем сложим полученные результаты:

Также можно воспользоваться правилом извлечения квадратного корня из дроби:

В данном примере первый способ оказался проще и удобнее.


Пример 5. Найти значение выражения 

Сначала вычислим квадратный корень, затем перемнóжим его с 10. Получившийся результат вычтем из 4


Пример 6. Найти значение выражения 

Сначала найдём значение квадратного корня . Он равен 0,6 поскольку 0,6= 0,36

Теперь вычислим получившееся выражение. Согласно порядку действий, сначала надо выполнить умножение, затем сложение:


Вынесение множителя из-под знака корня

В некоторых задачах может быть полезным вынесение множителя из-под знака корня.

Рассмотрим квадратный корень из произведения . Согласно правилу извлечения квадратного корня из произведения, нужно извлечь квадратный корень из каждого множителя данного произведения:

В нашем примере квадратный корень извлекается только из множителя 4. Его мы извлечём, а выражение  оставим без изменений:

Это и есть вынесение множителя из-под знака корня.

На практике подкореннóе выражение чаще всего требуется разложить на множители.


Пример 2. Вынести множитель из-под знака корня в выражении

Разлóжим подкореннóе выражение на множители 9 и 2. Тогда полýчим:

Теперь воспользуемся правило извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 9. Множитель 2 остáвим под кóрнем:


Пример 3. Вынести множитель из-под знака корня в выражении

Разлóжим подкореннóе выражение на множители 121 и 3. Тогда полýчим:

Теперь воспользуемся правилом извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 121. Выражение √3 остáвим под корнем:


Пример 4. Вынести множитель из-под знака корня в выражении

Воспользуемся правилом извлечения квадратного корня из произведения:

Квадратный корень извлекается только из числа 121. Извлечём его, а выражение √15 оставим без изменений:

Получается, что множитель 11 вынесен из-под знака корня. Вынесенный множитель принято записывать до выражения с корнем. Поменяем выражения √15 и 11 местами:


Пример 5. Вынести множитель из-под знака корня в выражении

Разлóжим подкореннóе выражение на множители 4 и 3

Воспользуемся правилом извлечения квадратного корня из произведения:

Извлечём корень из числа 4, а выражение √3 остáвим без изменений:


Пример 6. Упростить выражение 

Предстáвим второе слагаемое в виде . А третье слагаемое предстáвим в виде

Теперь в выражениях и вынесем множитель из-под знака корня:

Во втором слагаемом перемнóжим числа −4 и 4. Остальное перепишем без изменений:

Замечáем, что получившемся выражении квадратный корень √3 является общим множителем. Вынесем его за скобки:

Вычислим содержимое скобок, полýчим −1

Если множителем является −1, то записывают только минус. Единица опускается. Тогда полýчим окончательный ответ −√3


Внесение множителя под знак корня

Рассмотрим следующее выражение:

В этом выражении число 5 умнóжено на квадратный корень из числа 9. Найдём значение этого выражения.

Сначала извлечём квадратный корень, затем перемнóжим его с числом 5.

Квадратный корень из 9 равен 3. Перемнóжим его с числом 5. Тогда полýчим 15

Число 5 в данном случае было множителем. Внесём этот множитель под знак корня. Но сделать это нужно таким образом, чтобы в результате наших действий значение исходного выражения не изменилось. Проще говоря, после внесения множителя 5 под знак корня, получившееся выражение по-прежнему должно быть равно 15.

Значение выражения не изменится, если число 5 возвести во вторую степень и только тогда внести его под корень:

Итак, если данó выражение , и нужно внести множитель a под знак корня, то надо возвести во вторую степень множитель a и внести его под корень:

Пример 1. Внести множитель под знак корня в выражении

Возведём число 7 во вторую степень и внесём его под знак корня:


Пример 2. Внести множитель под знак корня в выражении 

Возведём число 10 во вторую степень и внесем его под знак корня:


Пример 3. Внести множитель под знак корня в выражении 

Вносить под знак корня можно только положительный множитель. Ранее было сказано, что выражение вида  не имеет смысла.

Однако, если перед знаком кóрня располагается отрицательный множитель, то минус можно оставить за знáком корня, а самó число внести под знак корня.

Пример 4. Внести множитель по знак корня в выражении 

В этом примере под знак корня внóсится только 3. Минус остаётся за знáком корня:


Пример 5. Выполнить возведéние в степень в следующем выражении:

Воспользуемся формулой квадрата суммы двух выражений:

(a + b)2 = a+ 2ab + b2

Роль переменной a в данном случае играет выражение √3, роль переменной b — выражение √2. Тогда полýчим:

Теперь необходимо упростить получившееся выражение.

Для выражений и  применим правило . Ранее мы говорили, что если выражение вида  возвести во вторую степень, то это выражение будет равно подкореннóму выражению a.

А в выражении для множителей и применим правило . То есть заменим произведение корней на один общий корень:

Приведём подобные слагаемые. В данном случае можно сложить слагаемые 3 и 2. А в слагаемом вычислить произведение, которое под кóрнем:


 

Задания для самостоятельного решения

Задание 1. Найдите значение квадратного корня:

Решение:

Задание 2. Найдите значение квадратного корня:

Решение:

Задание 3. Найдите значение квадратного корня:

Решение:

Задание 4. Найдите значение выражения:

Решение:

Задание 5. Найдите значение квадратного корня:

Решение:

Задание 6. Найдите значение квадратного корня:

Решение:

Задание 7. Найдите значение квадратного корня:

Решение:

Задание 8. Найдите значения следующих выражений:

Решение:

Задание 9. Извлеките квадратный корень из числа 4624

Решение:

Задание 10. Извлеките квадратный корень из числа 11025

Решение:

Задание 11. Найдите значение квадратного корня:

Решение:

Задание 12. Найдите значение квадратного корня:

Решение:

Задание 13. Найдите значение квадратного корня:

Решение:

Задание 14. Найдите значение квадратного корня:

Решение:

Задание 15. Найдите значение квадратного корня:

Решение:

Задание 16. Найдите значение выражения:

Решение:

Задание 17. Найдите значение выражения:

Решение:

Задание 18. Найдите значение выражения:

Решение:

Задание 19. Найдите значение выражения:

Решение:

Задание 20. Найдите значение выражения:

Решение:

Задание 21. Найдите значение выражения:

Решение:

Задание 22. Найдите значение выражения:

Решение:

Задание 23. Найдите значение выражения:

Решение:

Задание 24. Найдите значение выражения:

Решение:

Задание 25. Найдите значение выражения:

Решение:

Задание 26. Найдите значение выражения:

Решение:

Задание 27. Найдите значение выражения:

Решение:

Задание 28. Найдите значение выражения:

Решение:

Задание 29. Найдите значение выражения:

Решение:

Задание 30. Найдите значение выражения:

Решение:

Задание 31. Найдите значение выражения:

Решение:

Задание 32. Найдите значение выражения:

Решение:

Задание 33. Найдите значение выражения:

Решение:

Задание 34. Вынести множитель из-под знака корня:

Решение:

Задание 35. Вынести множитель из-под знака корня:

Решение:

Задание 36. Вынести множитель из-под знака корня:

Решение:

Задание 37. Вынести множитель из-под знака корня:

Решение:

Задание 38. Вынести множитель из-под знака корня:

Решение:

Задание 39. Вынести множитель из-под знака корня:

Решение:

Задание 40. Вынести множитель из-под знака корня:

Решение:

Задание 41. Вынести множитель из-под знака корня:

Решение:

Задание 42. Вынести множитель из-под знака корня:

Решение:

Задание 43. Вынести множитель из-под знака корня:

Решение:

Задание 44. Вынести множитель из-под знака корня в следующих выражениях:

Решение:

Задание 45. Внести множитель под знак корня:

Решение:

Задание 46. Внести множитель под знак корня:

Решение:

Задание 47. Внести множитель под знак корня:

Решение:

Задание 48. Внести множитель под знак корня:

Решение:

Задание 49. Внести множитель под знак корня:

Решение:

Задание 50. Внести множитель под знак корня в следующих выражениях:

Решение:

Задание 51. Упростить выражение:

Решение:

Задание 52. Упростить выражение:

Решение:

Задание 53. Упростить выражение:

Решение:

Задание 54. Упростить выражение:

Решение:

Задание 55. Упростить выражение:

Решение:

Задание 56. Упростить выражение:

Решение:

Задание 57. Упростить выражение:

Решение:

Задание 58. Упростить выражение:

Решение:

Задание 59. Упростить выражение:

Решение:

Задание 60. Упростить выражение:

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках



Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

Квадратный корень.2=400\\
\hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\), то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\), а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt
a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt
2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\), а вот \(\sqrt
2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt
2+7\). Дальше это выражение, к сожалению, упростить никак нельзя

 
\(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad
\sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл)
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot
2}=\sqrt{64}=8\);
 
\(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\);
 
\(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}=
5\cdot 8=40\).
 
\(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\). Так как \(44100:100=441\), то \(44100=100\cdot 441\). По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\), то есть \(441=9\cdot 49\).
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}=
\sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}=
\sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{
\dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot
\sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot
\sqrt2\)). Так как \(5=\sqrt{25}\), то \[5\sqrt2=\sqrt{25}\cdot \sqrt2=\sqrt{25\cdot 2}=\sqrt{50}\] Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\),
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\).2\), поэтому \(\sqrt{16}=4\). А вот извлечь корень из числа \(3\), то есть найти \(\sqrt3\), нельзя, потому что нет такого числа, которое в квадрате даст \(3\).
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\)), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\)) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\).
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.
 

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\), равное расстоянию от точки \(a\) до \(0\) на вещественной прямой.2\\
&2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\).
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)!
 
\(\bullet\) Следует запомнить, что \[\begin{aligned}
&\sqrt 2\approx 1,4\\[1ex]
&\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел!
 
\(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа.2=168\cdot 168=28224\).
Следовательно, \(\sqrt{28224}=168\). Вуаля!

Корни и степени. Квадратный корень, кубический корень.

Степенью называется выражение вида .

Здесь  — основание степени,  — показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, .

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

.

Возвести число в куб — значит умножить его само на себя три раза.

.

Возвести число в натуральную степень  — значит умножить его само на себя раз:

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

.

Это верно для . Выражение 00 не определено.

Определим также, что такое степень с целым отрицательным показателем.

Конечно, все это верно для , поскольку на ноль делить нельзя.

Например,

Заметим, что при возведении в минус первую степень дробь переворачивается.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где  — целое,  — натуральное.

Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Арифметический квадратный корень из числа  — это такое неотрицательное число, квадрат которого равен .

Согласно определению,

В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение    для нас сейчас имеет смысл только при .

Выражение всегда неотрицательно, т.е. . Например, .

Свойства арифметического квадратного корня:

Кубический корень

Аналогично, кубический корень из  — это такое число, которое при возведении в третью степень дает число .

Например, , так как ;

, так как ;

, так как .

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня -ной степени для любого целого .

Корень -ной степени

Корень -ной степени из числа  — это такое число, при возведении которого в -ную степень получается число .

Например,

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, — такое число, что . Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

в общем случае .

Сразу договоримся, что основание степени больше 0.

Например,

Выражение по определению равно .

При этом также выполняется условие, что больше 0.

Например,

Запомним правила действий со степенями:

— при перемножении степеней показатели складываются

— при делении степени на степень показатели вычитаются

— при возведении степени в степень показатели перемножаются

Ты нашел то, что искал? Поделись с друзьями!

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

1.

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

2.

3.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.

Уравнение и его корни: определения, примеры

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Определение 1

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t, r, m др., но чаще всего используются x, y, z. Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x=5, y=6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x+7=38, z−4=2, 8·t=4, 6:x=3.

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7·(x−1) =19, x+6·(x+6·(x−8))=3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x+2+4·x−2−x=10. Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x·(8+1)−7=8, 3−3=z+3 или 8·x−9=2·(x+17).

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Определение 2

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x+3=6·x+7 – это уравнение с переменной x, а 3·y−1+y=0 – уравнение с переменной y.

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Определение 3

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3,7·x+0,6=1 является уравнением с одной переменной x, а x−z=5 – уравнением с двумя переменными x и z. Примером уравнения с тремя переменными может быть выражение x2+(y−6)2+(z+0,6)2=26.

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Пример 1

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a+1=5 мы заменим букву числом 2, то равенство станет неверным, а если 4, то получится верное равенство 4+1=5.

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Определение 4

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Пример 2

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a+1=5. Согласно определению, корнем в данном случае будет 4, потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2+1=5.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0·x=5. Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0.

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Пример 3

Так, в уравнении x−2=4 есть только один корень – шесть, в x2=9 два корня ­­– три и минус три, в x·(x−1)·(x−2)=0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅. Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня -2, 1 и 5, то пишем -2, 1, 5 или {-2, 1, 5}.

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y, а корнями являются 2 и 7, то мы пишем y=2 и y=7. Иногда к буквам добавляются нижние индексы, например, x1=3, x2=5. Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N, целых ­– Z, действительных – R. Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x∈Z, а если любое действительное от единицы до девяти, то y∈1, 9.

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Определение 5

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Пример 4

Допустим, у нас есть выражение x+y=7, которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4, то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как (3,4).

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Как решать неполные квадратные уравнения? Примеры и Формулы

Основные понятия

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

  • если D < 0, корней нет;
  • если D = 0, есть один корень;
  • если D > 0, есть два различных корня.

Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

Неполные квадратные уравнения бывают трех видов:

  • Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.

Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три формулы неполных квадратных уравнений:

  • ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax² + c = 0, при b = 0;
  • ax² + bx = 0, при c = 0.

Как решить уравнение ax² = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

Пример 1. Решить −5x² = 0.

Как решаем:

 

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

    −5x² = 0

    x² = 0

    x = √0

    x = 0

    Ответ: 0.

Как решить уравнение ax² + с = 0

Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

  • перенесем c в правую часть: ax² = — c,
  • разделим обе части на a: x² = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а < 0, то уравнение x² = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а < 0 ни для какого числа p равенство р² = — c/а не является верным.

Если — c/а > 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

  • не имеет корней при — c/а < 0;
  • имеет два корня х = √- c/а и х = -√- c/а при — c/а > 0.

Пример 1. Найти решение уравнения 9x² + 4 = 0.

Как решать:

 

  1. Перенесем свободный член в правую часть:

    9x² = — 4

  2. Разделим обе части на 9:

    x² = — 4/9

  3. В правой части осталось число со знаком минус, значит у данного уравнения нет корней.

Ответ: уравнение 9x² + 4 = 0 не имеет корней.

Пример 2. Решить -x² + 9 = 0.

Как решаем:

 

  1. Перенесем свободный член в правую часть:

    -x² = -9

  2. Разделим обе части на -1:

    x² = 9

  3. Найти корни:

    x = √9

    x = -3

    x = 3

Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.

Как решить уравнение ax² + bx = 0

Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

Пример 1. Решить уравнение 2x² — 32x = 0

Как решать:

 

  1. Вынести х за скобки

    х(2x — 32) = 0

  2. Это уравнение равносильно х = 0 и 2x — 32 = 0.
  3. Решить линейное уравнение:

    2x = 32,

    х = 32/2

  4. Разделить:

    х = 16

  5. Значит корни исходного уравнения — 0 и 16.

Ответ: х = 0 и х = 16.

Пример 2. Решить уравнение 3x² — 12x = 0

Как решать:

Разложить левую часть уравнения на множители и найти корни:

Ответ: х = 0 и х = 4.

Уравнение. Корень уравнения | Математика

Уравнение — это равенство, которое справедливо не при любых значениях входящих в него букв, а только при некоторых. Так же можно сказать, что уравнение является равенством, содержащим неизвестные числа, обозначенные буквами.

Например, равенство  10 — x = 2  является уравнением, так как оно справедливо только при  x = 8.  Равенство  x2 = 49  — это уравнение, справедливое при двух значениях  x,  а именно, при

x = +7   и   x = -7,

так как

(+7)2 = 49   и   (-7)2 = 49.

Если вместо  x  подставить его значение, то уравнение превратится в тождество. Такие переменные, как  x,  которые только при определённых значениях обращают уравнение в тождество, называются неизвестными уравнения. Они обычно обозначаются последними буквами латинского алфавита  xy  и  z.

Любое уравнение имеет левую и правую части. Выражение, стоящее слева от знака  =,  называется левой частью уравнения, а стоящее справа — правой частью уравнения. Числа и алгебраические выражения, из которых состоит уравнение, называются членами уравнения:

Корни уравнения

Корень уравнения — это число, при подстановке которого в уравнение получается верное равенство. Уравнение может иметь всего один корень, может иметь несколько корней или не иметь корней вообще.

Например, корнем уравнения

10 — x = 2

является число  8,  а у уравнения

x2 = 49

два корня —  +7  и  -7.

Решить уравнение – значит, найти все его корни или доказать, что их нет.

Виды уравнений

Кроме числовых уравнений, подобных приведённым выше, где все известные величины обозначены числами, существуют ещё буквенные уравнения, в которые кроме букв, обозначающих неизвестные, входят ещё буквы, обозначающие известные (или предполагаемые известные) величины.

Примеры:

xa = b + c;

3x + c = 2a + 5.

По числу неизвестных уравнения разделяются на уравнения с 1-м неизвестным, с 2-мя неизвестными, с 3-мя и более неизвестными.

Примеры:

7x + 2 = 35 — 2x  — уравнение с одним неизвестным,

3x + y = 8x — 2y  — уравнение с двумя неизвестными.

Поиск корней — Бесплатная справка по математике

Что такое «рут»?

Корень — это значение, для которого заданная функция равна нулю. Когда эта функция отображается на графике, корнями являются точки, в которых функция пересекает ось x.

Для функции \ (f (x) \) корнями являются значения x, для которых \ (f (x) = 0 \). Например, с функцией \ (f (x) = 2-x \) единственный корень будет \ (x = 2 \), потому что это значение дает \ (f (x) = 0 \).

Конечно, легко найти корни такой тривиальной проблемы, но как насчет чего-то безумного вроде этого:

$$ f (x) = \ frac {(2x-3) (x + 3)} {x (x-2)} $$

Шаги по поиску корней рациональных функций

  1. Установите каждый множитель в числителе равным нулю.

  2. Решите этот множитель относительно x.

  3. Проверьте множители знаменателя, чтобы убедиться, что вы не делите на ноль!

Коэффициенты числителя

Помните, что коэффициент — это что-то умножаемое или делимое, например \ ((2x-3) \) в приведенном выше примере. Итак, два множителя в числителе — это \ ((2x-3) \) и \ ((x + 3) \). Если или из этих факторов могут быть равны нулю, тогда вся функция будет равна нулю.Не имеет значения (ну, есть исключение), что говорит остальная часть функции, потому что вы умножаете на член, равный нулю.

Итак, суть в том, чтобы выяснить, как сделать числитель нулевым, и вы нашли свои корни (также известные как нули по понятным причинам!). В этом примере у нас есть два множителя в числителе, поэтому любой из них может быть равен нулю. Давайте установим их (по отдельности) равными нулю, а затем решим для значений x:

$$ 2x — 3 = 0 $$
$$ 2x = 3 $$
$$ x = \ frac {3} {2} $$

И

$$ x + 3 = 0 $$
$$ x = -3 $$

Итак, \ (x = \ frac {3} {2} \) и \ (x = -3 \) становятся нашими корнями для этой функции.Они также являются пересечениями по оси x при нанесении на график, потому что y будет равно 0, когда x равен 3/2 или -3.

Факторы знаменателя

Как и в числителе, знаменатели умножаются на два множителя. Это \ (x \) и \ (x-2 \). Приравняем их к нулю и решим:

$$ x = 0 $$

И

$$ x — 2 = 0 $$
$$ x = 2 $$

Это , а не корней этой функции. Посмотрите, что происходит, когда мы подставляем 0 или 2 для x. В знаменателе получаем ноль, что означает деление на ноль.Это означает, что на данный момент функции не существует. Фактически, x = 0 и x = 2 становятся нашими вертикальными асимптотами (нулями в знаменателе). Итак, существует вертикальная асимптота при x = 0 и x = 2 для указанной выше функции.

Вот геометрическое изображение того, как выглядит приведенная выше функция, включая ОБА x-пересечения и ОБЕИ вертикальные асимптоты:

Сводка

Корни функции — это значения x, для которых функция равна нулю. Их также называют нулями. Если дана рациональная функция, обнулить числитель путем обнуления факторов по отдельности.Убедитесь, что ваши нули также не превращают знаменатель в ноль, потому что тогда у вас будет не корень, а вертикальная асимптота.

Найдите корни данного уравнения ниже:

BioMath: квадратичные функции

В этом разделе мы узнаем, как найти корень (корень) квадратного уравнения. Корни также называются перехватами x или нулями. Квадратичная функция графически представлена ​​параболой с вершиной, расположенной в начале координат, ниже оси x или выше оси x .Следовательно, квадратичная функция может иметь один, два или нулевой корень.

Когда нас просят решить квадратное уравнение, нас действительно просят найти корни. Мы уже видели, что завершение квадрата — полезный метод для решения квадратных уравнений. Этот метод можно использовать для вывода квадратной формулы, которая используется для решения квадратных уравнений. Фактически, корни функции

f ( x ) = ax 2 + bx + c

даются по формуле корней квадратного уравнения.Корни функции — это перехваты x . По определению, координата y точек, лежащих на оси x , равна нулю. Поэтому, чтобы найти корни квадратичной функции, мы устанавливаем f ( x ) = 0 и решаем уравнение:

ax 2 + bx + c = 0.

Мы можем сделать это, заполнив квадрат как,

Решая для x и упрощая, получаем

Таким образом, корни квадратичной функции имеют вид,

Эта формула называется квадратной формулой , и ее вывод включен, чтобы вы могли видеть, откуда она взялась.Мы называем термин b 2 −4 ac дискриминантом . Дискриминант важен, потому что он говорит вам, сколько корней имеет квадратичная функция. В частности, если

1. b 2 −4 ac <0 Настоящих корней нет.

2. b 2 −4 ac = 0 Имеется один действительный корень.

3. b 2 −4 ac > 0 Есть два настоящих корня.

Рассмотрим каждый случай индивидуально.

Случай 1: Настоящие корни отсутствуют

Если дискриминант квадратичной функции меньше нуля, эта функция не имеет действительных корней, и парабола, которую она представляет, не пересекает ось x . Поскольку квадратная формула требует извлечения квадратного корня из дискриминанта, отрицательный дискриминант создает проблему, потому что квадратный корень из отрицательного числа не определяется по действительной прямой.Пример квадратичной функции без действительных корней дается формулой

.

f ( x ) = x 2 — 3 x + 4.

Обратите внимание, что дискриминант f ( x ) отрицательный,

b 2 −4 ac = (−3) 2 — 4 · 1 · 4 = 9 — 16 = −7.

Эта функция графически представлена ​​открывающейся вверх параболой, вершина которой лежит выше оси x.Таким образом, график никогда не может пересекать ось x и не имеет корней, как показано ниже,

Случай 2: Один настоящий корень

Если дискриминант квадратичной функции равен нулю, эта функция имеет ровно один действительный корень и пересекает ось x в одной точке. Чтобы увидеть это, мы устанавливаем b 2 −4 ac = 0 в формуле корней квадратного уравнения, чтобы получить

Обратите внимание, что это координата x вершины параболы.Таким образом, парабола имеет ровно один действительный корень, когда вершина параболы лежит прямо на оси x . Простейший пример квадратичной функции, имеющей только один действительный корень, —

.

y = x 2 ,

, где действительный корень равен x = 0.

Другой пример квадратичной функции с одним действительным корнем:

f ( x ) = −4 x 2 + 12 x — 9.

Обратите внимание, что дискриминант f ( x ) равен нулю,

b 2 −4 ac = (12) 2 — 4 · −4 · −9 = 144 — 144 = 0.

Эта функция графически представлена ​​параболой, которая открывается вниз и имеет вершину (3/2, 0), лежащую на оси x . Таким образом, график пересекает ось x ровно в одной точке (т.е. имеет один корень), как показано ниже,

.

Случай 3: Два настоящих корня

Если дискриминант квадратичной функции больше нуля, эта функция имеет два действительных корня ( x -перехватывание).Извлечение квадратного корня из положительного действительного числа хорошо определено, и два корня равны,

Пример квадратичной функции с двумя действительными корнями:,

f ( x ) = 2 x 2 — 11 x + 5.

Обратите внимание, что дискриминант f ( x ) больше нуля,

b 2 — 4 ac = (−11) 2 — 4 · 2 · 5 = 121 — 40 = 81.

Эта функция графически представлена ​​открывающейся вверх параболой, вершина которой лежит ниже оси x . Таким образом, график должен пересекать ось x в двух местах (т.е. иметь два корня), как показано ниже,

.

*****

В следующем разделе мы будем использовать квадратную формулу для решения квадратных уравнений.

Решение квадратных уравнений

Поиск корней — Алгебра II

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает
или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
в
информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в виде
ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; а также
Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Как использовать квадратичную формулу для поиска корней уравнений — Видео и стенограмма урока

Квадратичная формула

Квадратичная формула — это формула, которую мы можем использовать для нахождения корней квадратного уравнения a x 2 + b x + c = 0.

Чтобы использовать квадратную формулу для нахождения корней квадратного уравнения, все, что нам нужно сделать, это получить квадратное уравнение в форме a x 2 + b x + c = 0; идентифицировать a , b и c ; а затем подключите их к формуле. Чтобы идентифицировать эти значения, мы просто помним, что a перед x 2, b перед x , а c — это само по себе число.

Например, в нашем уравнении — x 2 + 4 x + 5 = 0, число перед x 2 равно -1, поэтому a = -1. Число перед x равно 4, поэтому b = 4. Наконец, само число 5, поэтому c = 5. Мы почти у цели! Все, что нам нужно сделать, это подставить эти значения в нашу формулу корней квадратного уравнения, и тогда мы сможем найти значения x , которые делают наше уравнение истинным. Тогда мы узнаем, сколько времени потребуется мячу, чтобы коснуться земли.Приступим к подключению!

Мы видим, что шар находится на высоте 0, когда x = -1 и когда x = 5. В нашем случае мы можем игнорировать x = -1. Хотя верно, что x = -1 является корнем уравнения, мы знаем, что x представляет время, и у нас не может быть -1 секунды. Единственная причина, по которой это выглядит так, заключается в том, что, когда мы изначально бросали мяч на 0 секунде, мы находились на высоте 5 футов над землей.

Поскольку мы отказались от ответа x = -1, остается x = 5 как решение нашей конкретной проблемы. Это говорит нам о том, что мяч ударился о землю через 5 секунд после того, как мы его бросили, поэтому он находился в воздухе 5 секунд. Разве это не здорово, что мы могли это выяснить, используя нашу формулу корней квадратного уравнения?

Другой пример

Рассмотрим еще один пример. Допустим, мы делаем каркасную поделку. На основе имеющихся у нас материалов площадь кадра может быть представлена ​​уравнением A = x 2 + 2 x , где A — это площадь кадра, а x — это площадь кадра. ширина рамки.Мы хотим, чтобы наша область была 24 на 2, поэтому нам просто нужно найти ширину, которая делает это так.

Для этого мы подставляем 24 для A , чтобы получить

x 2 + 2 x = 24

Мы вычитаем 24 с обеих сторон, чтобы получить уравнение в правильной форме:

x 2 + 2 x — 24 = 0

Теперь мы хотим идентифицировать a , b и c на основе чисел перед x 2, x и отдельно , соответственно.Таким образом, мы имеем a = 1, b = 2 и c = -24. Все, что нам нужно сделать сейчас, это подставить их в нашу квадратную формулу:

Мы видим, что ширина равна 4 или -6. Поскольку у нас не может быть отрицательной ширины, она должна быть равна 4, чтобы иметь площадь 24 дюйма2.

Краткое содержание урока

Квадратное уравнение — это уравнение, в котором наивысший показатель любой переменной равен 2.Решения квадратных уравнений называются корнями . Квадратные уравнения имеют 2 корня. Мы можем найти корни квадратного уравнения, используя формулу корней квадратного уравнения:

Чтобы использовать это, мы записываем уравнение в виде a x 2 + b x + c = 0; идентифицировать a , b и c ; а затем подставьте эти значения в формулу.

Квадратные уравнения постоянно используются для моделирования явлений реального мира, поэтому очень полезно знать, как решать эти уравнения.Квадратичная формула — обязательный инструмент, который нужно добавить в свой математический инструментарий!

Как вычислить квадратный корень вручную (с иллюстрациями)

Резюме статьиX

Чтобы вычислить квадратный корень вручную, сначала оцените ответ, найдя 2 полных квадратных корня, между которыми находится это число. Идеальный квадратный корень — это любой квадратный корень из целого числа. Например, если вы пытаетесь найти квадратный корень из 7, сначала вам нужно найти первый правильный квадрат ниже 7, который равен 4, и первый правильный квадрат выше 7, который равен 9.Затем найдите квадратный корень из каждого идеального квадрата. Квадратный корень из 4 равен 2, а квадратный корень из 9 равен 3. Таким образом, вы знаете, что квадратный корень из 7 находится где-то между 2 и 3. Теперь разделите полученное число на один из найденных полных квадратных корней. Например, вы бы разделили 7 на 2 или 3. Если бы вы выбрали 3, ваш ответ был бы 2,33. Затем найдите среднее значение этого числа и точный квадратный корень. Чтобы найти среднее значение в этом примере, сложите 2,33 и 2, затем разделите на 2 и получите 2.16. Повторите процесс, используя полученное среднее значение. Сначала разделите число, из которого вы пытаетесь найти квадратный корень, на среднее значение. Затем найдите среднее значение этого числа и исходного среднего, сложив их и разделив на 2. Например, сначала вы разделите 7, число, с которого вы начали, на 2,16, среднее, которое вы рассчитали, и получите 3,24. Затем вы должны добавить 3,24 к 2,16, старому среднему, и разделить на 2, чтобы найти новое среднее значение, равное 2,7. Теперь умножьте свой ответ на себя, чтобы увидеть, насколько он близок к квадратному корню из числа, с которого вы начали.В этом примере 2,7, умноженное на само себя, равно 7,29, что на 0,29 отличается от 7. Чтобы приблизиться к 7, вы просто должны повторить процесс. Продолжайте делить число, с которого вы начали, на среднее значение этого числа и идеальный квадрат, используя это число и старое среднее значение, чтобы найти новое среднее, и умножайте новое среднее значение само на себя, пока оно не сравняется с вашим начальным числом. Если вы хотите узнать, как использовать алгоритм длинного деления для нахождения квадратного корня, продолжайте читать статью!

Спасибо всем авторам за создание страницы, которую прочитали 2143119 раз.2 ??? минус ??? 4ac ???, по всей площади ??? 2a ??? »

Квадратные уравнения

Пример квадратного уравнения :

Функция создает красивые кривые, подобные этой:

Имя

Название Quadratic происходит от слова «quad», что означает квадрат, потому что переменная возводится в квадрат (например, x 2 ).

Его также называют «уравнением степени 2» (из-за «2» на x )

Стандартная форма

Стандартная форма квадратного уравнения выглядит так:

  • a , b и c — известные значения. не может быть 0.
  • « x » — это переменная или неизвестно (мы еще не знаем).

Вот несколько примеров:

2x 2 + 5x + 3 = 0 В этом a = 2 , b = 5 и c = 3
x 2 — 3x = 0 Это немного сложнее:

  • Где а ? Ну a = 1 , так как мы обычно не пишем «1x 2 »
  • b = −3
  • А где c ? Ну c = 0 , поэтому не показан.
5x — 3 = 0 Ой! Это , а не квадратное уравнение: оно отсутствует x 2

(другими словами a = 0 , что означает, что он не может быть квадратичным)

Поиграйте с этим

Поиграйте с «Проводником квадратного уравнения», чтобы увидеть:

  • график функции и
  • решений (называемых «корнями»).

Скрытые квадратные уравнения!

Как мы видели ранее, Стандартная форма квадратного уравнения —

Но иногда квадратное уравнение так не выглядит!

Например:

Скрытый в стандартной форме a, b и c
x 2 = 3x — 1 Переместить все термины в левую часть x 2 — 3x + 1 = 0 a = 1, b = −3, c = 1
2 (ширина 2 — 2w) = 5 Развернуть (снять скобки),

и переместите 5 влево
2 Вт 2 — 4 Вт — 5 = 0 a = 2, b = −4, c = −5
z (z − 1) = 3 Разверните и переместите 3 влево z 2 — z — 3 = 0 a = 1, b = −1, c = −3

Как их решить?

« решений » квадратного уравнения — это где равно нулю .

Их также называют « корень », или иногда « нулей »

Обычно существует 2 решения (как показано на этом графике).

И есть несколько разных способов найти решения:

Или мы можем использовать специальную квадратичную формулу :

Просто введите значения a, b и c и выполняйте вычисления.

Сейчас мы рассмотрим этот метод более подробно.

О квадратичной формуле

Плюс / Минус

Прежде всего, что это за плюс / минус, который выглядит как ±?

± означает ДВА ответа:

x = −b + √ (b 2 — 4ac) 2a

x = −b — √ (b 2 — 4ac) 2a

Вот пример с двумя ответами:

Но не всегда так получается!

  • Представьте, что кривая «просто касается» оси x.
  • Или представьте, что кривая настолько высока , что даже не пересекает ось x!

Вот тут-то нам и помогает «Дискриминант» …

Дискриминант

Вы видите b 2 — 4ac в приведенной выше формуле? Он называется Дискриминант , потому что он может «различать» возможные типы ответов:

  • когда b 2 — 4ac положительный, мы получаем два Реальных решения
  • , когда он равен нулю, мы получаем только ОДНО реальное решение (оба ответа одинаковы)
  • при отрицательном значении получаем пару Комплексных решений

Комплексные решения? Давайте поговорим о них после того, как мы увидим, как использовать формулу.

Использование квадратичной формулы

Просто введите значения a, b и c в квадратную формулу и произведите вычисления.

Пример: Решить 5x

2 + 6x + 1 = 0

Коэффициенты: a = 5, b = 6, c = 1

Квадратичная формула: x =
−b ± √ (b 2 — 4ac)
2a

Вставьте a, b и c: x =
−6 ± √ (6 2 — 4 × 5 × 1)
2 × 5

Решить: x =
−6 ± √ (36 — 20)
10

х =
−6 ± √ (16)
10

х =
−6 ± 4
10

х = -0.2 или -1

Ответ: x = −0,2 или x = −1

И мы их видим на этом графике.

Чек -0,2 : 5 × ( −0,2 ) 2 + 6 × ( −0,2 ) + 1

= 5 × (0,04) + 6 × (-0,2) + 1

= 0,2 — 1,2 + 1

= 0
Чек -1 : 5 × ( −1 ) 2 + 6 × ( −1 ) + 1

= 5 × (1) + 6 × (-1) + 1

= 5–6 + 1

= 0

Вспоминая формулу

Добрый читатель предложил спеть это к «Pop Goes the Weasel»:

«x равно минус b «Вокруг тутового куста
плюс или минус квадратный корень Обезьяна погналась за лаской
квадрата b минус четыре a c Обезьяна думала, что все было весело
ВСЕ по двум a « Поп! идет ласка »

Попробуйте спеть несколько раз, и она застрянет у вас в голове!

Или вы можете вспомнить эту историю:

х =
−b ± √ (b 2 — 4ac)
2a

«Негативный мальчик думал, да или нет, о том, чтобы пойти на вечеринку,
на вечеринке он разговаривал с квадратным мальчиком, но не с четырьмя классными цыпочками.
В 2 часа ночи все было кончено.
«

Комплексные решения?

Когда Дискриминант (значение b 2 — 4ac ) отрицателен, мы получаем пару Комплексных решений … что это означает?

Это означает, что наш ответ будет включать мнимые числа. Ух ты!

Пример: Решить 5x

2 + 2x + 1 = 0

Коэффициенты равны : a = 5, b = 2, c = 1

Обратите внимание, что дискриминант отрицательный: b 2 — 4ac = 2 2 — 4 × 5 × 1
= −16

Используйте квадратичную формулу : x =
−2 ± √ (−16)
10

√ (-16)
= 4 i
(где i — мнимое число √ − 1)

Итак: x =
−2 ± 4 и
10

Ответ: x = −0.2 ± 0,4 и

График не пересекает ось абсцисс. Вот почему мы пришли к комплексным числам.

В некотором смысле это проще: нам не нужно больше вычислений, просто оставьте -0,2 ± 0,4 i .

Пример: Решить x

2 — 4x + 6,25 = 0

Коэффициенты равны : a = 1, b = −4, c = 6,25

Обратите внимание, что дискриминант отрицательный: b 2 — 4ac = (−4) 2 — 4 × 1 × 6.25
= −9

Используйте квадратичную формулу : x = — (- 4) ± √ (−9) 2

√ (−9) = 3 i
(где i — мнимое число √ − 1)

Итак: x = 4 ± 3 i 2

Ответ: x = 2 ± 1,5 i

График не пересекает ось абсцисс.Вот почему мы пришли к комплексным числам.

НО перевернутое зеркальное отображение нашего уравнения действительно пересекает ось x в 2 ± 1,5 (примечание: отсутствует i ).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *